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We propose a sequence of pulses intended to preserve the state of a qubit in the presence of strong, coherent
coupling to another quantum system. The sequence can be understood as a generalized SWAP sequence and works
in formal analogy to the well-known spin echo. Since the resulting effective decoherence rate of the qubit state
is strongly influenced by the additional system, this sequence might serve to protect its quantum state as well as
negating the effects of the coherent coupling. A possible area of application is in large-scale quantum computing
architectures, where spectral crowding of the resources might necessitate a method to mitigate residual couplings.
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I. INTRODUCTION

Any future large-scale quantum computation architecture
will involve a large number of quantum-coherent elements.
Any building blocks which employ similar fundamental
concepts (i.e., superconducting circuits, quantum dots, ions,
etc.) will necessarily have level energies similar in frequency
to many others. This clustering of energies may lead to
unwanted, spurious couplings between different elements,
possibly disturbing the operation of the whole. Proposed ways
around this problem involve tunable coupling elements with
large on-off ratios [1,2] as well as hybrid architectures [3–5],
where elements of different origins and thus different energy
scales are used for different tasks.

In this article we propose a method to dynamically negate
the effects of coherent coupling of a qubit to another quantum
system. Our proposal consists of a series of pulses applied
to the composite system and is inspired by the well known
spin-echo sequence [6], which is designed to mitigate slow-
noise fluctuations in the dynamics of a qubit. Since in the
course of the time evolution the state of the qubit will be partly
transferred into the additional quantum system, its properties
will strongly influence the resulting state. Specifically, when
considering a qubit coupled to a quantum memory element,
we find an improvement in the relaxation rate of the qubit. The
sequence might therefore also serve to protect the state of a
qubit from energy relaxation.

Schemes working towards protecting a qubit state with the
use of quantum memory traditionally focus on a full SWAP

sequence of the quantum information from qubit to storage
element. The information then resides in the memory for the
storage time T , after which another SWAP sequence is used
to write it back into the qubit; see, e.g., Refs. [3,7,8]. In
contrast to this traditional approach, the sequence we propose
only partially transfers the state of the qubit into the memory.
The possible protection is therefore weaker than in the usual
approach, but on the other hand application of the necessary
pulses can be significantly faster than for a full SWAP sequence.

Our proposal is inspired by the well-known spin- or Hahn-
echo sequence [6], a schematic depiction of which is shown
in Fig. 1(a). The spin-echo sequence is designed to protect

a two-level system (TLS) in a Ramsey experiment from the
effect of slow, environmentally induced fluctuations of its level
splitting. It finds wide application in NMR and more recently
the field of quantum computation [9]. In a typical Ramsey
experiment, a slightly detuned π/2 pulse is applied to a two-
level system. After some free evolution time T the same pulse
is applied again and the population of the system is measured.
The signal as a function of time will show the beating of the
state vector against the rotating frame as defined by the pulse, at
a frequency given by the pulse detuning δε. If a low-frequency
noise source acts on the value of the level splitting ε of the two-
level system, this will similarly affect the detuning δε, and thus
subsequent runs of the experiment will lead to different results.
This phenomenon is known as pure dephasing. The spin-echo
sequence now consists of the application of an additional π

pulse, the echo pulse, after half the evolution time T/2. Due
to the effect of this pulse, the state vector will, during the
second half of the time evolution, effectively retrace the path
it took in the first half. The system will at time T thus always
reach its initial state again and the effects of fluctuations at
frequencies which are slower than the inverse evolution time
1/T are canceled by the sequence.

For what we call the T1-echo sequence we want to apply the
same principles to the case of two coupled quantum systems,
namely, a qubit and a quantum memory. In the case of strong
coupling between the two, and for an initial state where
the qubit is excited while the memory rests in its ground
state, the system will undergo coherent oscillations where
the excitation is shifted periodically between the two parts.
The frequency of these oscillations depends on the strength
of the coherent coupling as well as on the detuning between
the two systems. Assuming both these quantities to be constant
in time, application of an echo pulse after half the evolution
time T/2 will cancel the effect of the coherent oscillations.
Since we have a coupled system to which we apply this pulse
sequence, the resulting effective decay of the qubit state will
be strongly influenced by the decay of the memory [10]. In
the case where the additional quantum system shows better
coherence properties than the qubit, this will allow us to
find an effective protection of the qubit state from energy
relaxation.
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(a)

(b)

FIG. 1. Schematic representation of the pulse sequence for
(a) standard spin-echo sequence and (b) the proposed T1-echo
sequence. In both cases, the state of the qubit is read out after time T .
Also in both cases, the application of echo and recovery pulses leads
to a final state which is independent of T . For details, see the text.

Figure 1(b) gives a depiction of the proposed pulse sequence
and compares it to the case of a spin-echo protocol. In the
T1-echo sequence, the system evolves freely for a time T/2.
After this period of free evolution, an echo pulse Û⊥ is applied,
which corresponds to a π rotation around an axis perpendicular
to the original axis of rotation. After another period T/2 of
free evolution, the state reached by the system will no longer
depend on the total time T it took to reach it. This state will in
general, however, not be the starting state and thus has to be
corrected by the application of a recovery pulse ÛR . The exact
nature and possible realizations of the pulses Û⊥ and ÛR will
be explained in detail below.

II. SYSTEM

We focus our theoretical analysis on a system consisting
of two coherently coupled two-level systems; one is the qubit
and the other one we will call a memory element from now
on. The Hamiltonian reads

Ĥ0 = − 1
2εqσz − 1

2εmτz + 1
4v⊥(σ+τ− + σ−τ+), (1)

where σ and τ are the Pauli matrices describing qubit and
memory, respectively. The qubit has a level splitting of size
εq while the memory is at energy εm, and they are coupled
with a coupling strength v⊥. We write the coupling in the
rotating-wave approximation, assuming εq,εm � v⊥. We also
consider the regime where qubit and memory are close to
resonant, εq ≈ εm, meaning that the coupling between the two
is effective, i.e., important for the time evolution.

In the validity range of the rotating-wave approximation, the
above Hamiltonian preserves the total number of excitations.
This property, when decoherence is neglected, enables us to
effectively decouple the dynamics for different numbers of
excitation. For the application of our sequence, we assume the
memory to be initially in its ground state |0m〉. In this case, and
under the action of the Hamiltonian Eq. (1), in order to show
protection of the qubit state it is sufficient to show that the total
ground state of the full system |0q,0m〉 is unaffected and that
we can bring the state |1q,0m〉 back to itself. We will not be
concerned with dynamic or geometric phases acquired during
time evolution since they can be negated using single-qubit
gates.

The restriction on a two-level system as the memory
used is not necessary for the implementation of the T1-echo
protocol; we use Eq. (1) as the simplest conceivable model. The
original motivation for these work came from research with
superconducting qubits coupled to intrinsic two-level defects
[7,11,12]. This system naturally realizes the Hamiltonian
Eq. (1) and, due to the defects’ possible long coherence
times [11], might serve as a testing ground for our proposal.
Another possibility for use as a memory would be a harmonic
oscillator in the quantum regime, as was realized, e.g., in
Refs. [12,13]. As long as no more than one excitation (i.e.,
either one photon in the resonator or the qubit in its excited
state) in total is involved in the dynamics, the underlying
Jaynes-Cummings Hamiltonian will lead to the same results
as the ones presented here. Recent experimental efforts have
succeeded in coherently transferring quantum information
from a qubit to an ensemble of spins in the solid state [3,8,14],
giving yet another possible experimental realization of the
model Eq. (1). In these ensemble systems, the weak individual
couplings g of the single spins act collectively to realize a
strong effective coupling proportional to

√
Ng to a collective

state of the ensemble. The effective Hamiltonian is again of the
Jaynes-Cummings type and thus can be reduced to Eq. (1) for a
single excitation. We want to note that there are other transfer
schemes proposed in the literature which, rather than using
a direct existing interaction between two physical systems,
induce such an interaction by use of, for instance, laser or
microwave excitation; see, e.g., Ref. [15]. For such situations,
our scheme seems impractical to realize since the interaction
term in Eq. (1) will be necessary at all times for our proposal.

III. EVOLUTION ON THE EFFECTIVE BLOCH SPHERE

To illustrate the workings of the T1-echo sequence, we will
first focus on the case of purely unitary evolution, i.e., zero
decoherence. In this case, and starting with the qubit in its
excited state and the memory in its ground state, |1q,0m〉, the
time evolution is restricted to a subspace of the full Hilbert
space containing only one excitation. We can describe this
subspace by an effective Bloch sphere, spanned by the states
containing only a single excitation in either the qubit or the
memory, i.e., span{|1q,0m〉,|0q,1m〉}. We will first give the
expressions for Û⊥ and ÛR and explain their effects on the time
evolution. Later in this section we will also show how to realize
these pulses without the need for high-frequency controls,
using only the detuned Hamiltonian evolution governed by
Eq. (1).

The states describing the effective Bloch sphere are

|z+〉 = |1q,0m〉 ≡ (0,0,1), |z−〉 = |0q,1m〉 ≡ (0,0, −1),

|x+〉 = 1√
2

(|1q,0m〉 + |0q,1m〉) ≡ (1,0,0),

|x−〉 = 1√
2

(|1q,0m〉 − |0q,1m〉) ≡ (−1,0,0), (2)

|y+〉 = 1√
2

(|1q,0m〉 + i|0q,1m〉) ≡ (0,1,0),

|y−〉 = 1√
2

(|1q,0m〉 − i|0q,1m〉) ≡ (0, −1,0),

032335-2
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where the indices q and m denote states of the qubit and the
memory, respectively, and the vectors (x,y,z) describe points
on the pseudo-three-dimensional Bloch sphere.

Restricting the Hilbert space to the one-excitation subspace,
the time evolution operator corresponding to Eq. (1) can be
written as

Û1(t,ξ0) = exp {−iĤ1t} = cos

(
1

2
ω0t

)
12 − i sin

(
1

2
ω0t

)

×
(− cos ξ0 sin ξ0

sin ξ0 cos ξ0

)
, (3)

where ω0 =
√
v2

⊥ + δω2, tan ξ0 = v⊥/δω, and we choose for
the detuning angle ξ0 ∈ [0,π ]. Here, δω = εq − εm is the
detuning between qubit and memory and we write Ĥ1 for
the part of the Hamiltonian Ĥ0 which is acting on the one-
excitation subspace. The expression Eq. (3) can be interpreted
as free precession on the Bloch sphere around the axis
	n0 = (sin ξ0,0, cos ξ0) with frequency ω0. The rotation axis
	n0 forms an angle ξ0 with the z axis. For zero detuning,
δω = 0, we find ξ0 = π/2 and therefore 	n0 = (1,0,0), i.e.,
the precession takes place around the x axis. In the case
of strong detuning, δω � v⊥, we have ξ0 = 0 and thus the
rotation axis is 	n0 = (0,0,1). If the initial state is also lying
on the z axis, i.e., |1q,0m〉, no rotation will take place. This
is equivalent to saying that for sufficiently strong detuning
between the two systems, their coupling no longer affects the
time evolution. Finally, for nonzero but finite detuning, the
resulting rotational axis lies somewhere in the middle between
the x and z axes. For example, for δω = v⊥, we find ξ0 = π/4
and 	n0 = 1√

2
(1,0,1). For our choice of interaction term in the

Hamiltonian Eq. (1), the axis around which rotations take place
is thus fixed on the xz plane of the effective Bloch sphere. It is
important to note that this is no special property of our choice
of interaction. In fact any physical interaction corresponding
to an exchange of energy between the qubit and the memory
will give a similar restriction of the axis of rotation to a plane
in the effective-Bloch-sphere picture.

In keeping with the ideas of spin echo, we want to apply a
π pulse around an axis which is perpendicular to the axis 	n0

of free evolution, and we want to apply this pulse after half the
total evolution time T . We have some freedom in the choice of
this axis, and will choose it lying again in the xz plane of the
one-excitation Bloch sphere. This selection will later enable
us to perform this rotation using only detuned Hamiltonian
evolution, without the need for high-frequency controls. The
axis 	n⊥ lying on the xz plane and perpendicular to 	n0 is simply
	n⊥ = (− cos ξ0,0, sin ξ0). An operator corresponding to a π

pulse around 	n⊥ is given by

Û⊥(ξ0) = i

(
sin ξ0 cos ξ0

cos ξ0 − sin ξ0

)
. (4)

After application of the echo pulse Û⊥, another period of free
evolution for the time T/2 brings the system into the state
|	T 〉, which is independent of the total evolution time T . The
state |	T 〉 before the application of the recovery pulse ÛR is

FIG. 2. (Color online) Step-by-step illustration of the T1-echo
sequence on the effective one-excitation Bloch sphere for the
resonance case δω = 0, with a starting state of |1q0m〉; for details
see the text. Red arrows show the path of the state vector during the
two time spans of free evolution; the blue dashed arrow represents
the path during the echo pulse Û⊥. The recovery pulse is not shown,
since for δω = 0 we have |	T 〉 = −i|	0〉. The illustration depicts a
free-evolution time of T = 2π/(3ω0). In this illustration we assume
infinitely sharp pulses, i.e., no time is needed for the application
of U⊥.

given by

|	T 〉 = Û1(T/2,ξ0) Û⊥(ξ0) Û1(T/2,ξ0) |1q,0m〉
= i(− sin ξ0|1q,0m〉 + cos ξ0|0q,1m〉)
≡ (− sin 2ξ0,0, − cos 2ξ0), (5)

meaning that it returns again to the xz plane of the effective
Bloch sphere. It is important to note again that the state |	T 〉 is
independent of the evolution time T , i.e., the echo pulse works
as expected.

Figure 2 shows an illustration of the full time evolution
without application of the final recovery pulse ÛR . The black
arrow in the pictures shows the state of the system at a given
time t when starting from state |1q,0m〉, while the red arrows
depict the path the state vector took on the Bloch sphere due to
free Hamiltonian evolution in the initial and final time spans
of length T/2. The blue dashed arrow finally depicts the path
taken during application of the echo pulse Û⊥. The situation
shown in Fig. 2 is for zero detuning between qubit and memory,
ξ0 = π/2, where |	T 〉 = −i|1q,0m〉.

To recover the initial state |	0〉 = |1q,0m〉 ≡ (0,0,1) from
|	T 〉, Eq. (5), there are again several possibilities. Choosing
again a rotation axis lying on the xz plane, we perform another
π pulse around the axis 	nR lying exactly halfway between |	T 〉
and the z axis on the xz plane. For this choice we find 	nR = 	n⊥
and thus ÛR = Û⊥.

Figure 3 gives an illustration of the effect of the full
sequence for a detuning between qubit and memory of δω =
−v⊥ and a total free-evolution time of T = 2π/ω0. The time
evolution starts and ends in the state |1q,0m〉. The periods
of free evolution depicted by red arrows are interspersed by
application of the pulses Û⊥ and ÛR , shown in blue.

032335-3
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FIG. 3. (Color online) Illustration of a full T1-echo sequence on
the effective Bloch sphere. Red arrows show the path of the state
vector during the free-evolution periods, while the dashed blue arrows
show the effects of the echo pulse Û⊥ and the recovery pulse ÛR . The
black vertical arrow depicts the state of the system at the start and end
of the sequence. The depicted situation corresponds to δω = −v⊥,
i.e., ξ0 = 3π/4, where we find |	T 〉 = |x+〉 and a total evolution
time of T = 2π/ω0.

The pulses Û⊥ and UR , given by Eq. (4), act in general
on both qubit and memory and might be hard to realize
experimentally. However, our choice of rotation axis on the
xz plane for both pulses enables us to give a protocol for
the T1-echo sequence which does not require direct unitary
control of either qubit or memory. The whole sequence can
in fact be realized utilizing only Hamiltonian evolution. In
this scenario, the pulses Û⊥ and ÛR correspond to periods
during which the qubit is tuned to a different working point
than for the free evolution time T . The working point for
these sequences is easy to calculate, when remembering that
the pulse we want to effect is a π pulse around an axis
which is perpendicular to the original free-evolution axis n0.
The position of n0 is completely governed by the detuning
angle ξ0 = arctan (v⊥/δω). Therefore, to have the system
evolve around an axis perpendicular to n0, we simply have
to change the detuning δω such that the new detuning angle ξ1

FIG. 4. (Color online) Illustration of the T1-echo sequence using
only detuned Hamiltonian evolution. Both pulses Û⊥ and ÛR can
be replaced by a period of detuned free evolution at detuning δω1 =
−v2

⊥/δω for the time tπ . The red line depicts the qubit’s level splitting
at different times. The resonance condition with the memory, εq = εm,
is indicated by the dashed line in the middle. The situation depicted
corresponds to the case of initially δω = v⊥ where δω1 = −δω.

encloses the angle π/2 with ξ0. We find

δω1 = −v2
⊥/δω. (6)

In order to generate a rotation angle of π we have to leave
the qubit at this detuning for a time tπ = π/ω1, where ω1 =√
v2

⊥ + δω2
1 is the oscillation frequency at the new bias point.

For these parameters of detuning and evolution time, we find
Û1(tπ ,ξ1) = Û⊥(ξ0).

FIG. 5. (Color online) Time evolution of the qubit’s excited-state
population P1q

as a function of free-evolution time T with (red solid)
and without (blue dashed) application of the T1-echo sequence and
for three different detunings between qubit and memory. The dotted
green line shows the decay of the qubit itself without any interactions
with other quantum systems. The pulses are assumed to be infinitely
sharp in time, and there is relaxation acting on only the qubit, not the
memory. Parameters are (in units of γ1,q ) γ1,m = γϕ,q = γϕ,m = 0,
v⊥ = 5, δω = 0 (top), 5 (middle), 15 (bottom).
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Figure 4 shows an illustration of the T1-echo sequence using
only Hamiltonian evolution. The red line represents the bias
point of the qubit as a function of time. Resonance with the
memory is indicated by the dashed black line.

We want to stress that the minimum time scale for the
application of the T1-echo sequence is given by 2tπ = 2π/ω1.
In contrast, the minimum time scale for a full SWAP operation
(transferring information into a memory and back again) is
2tswap = 2π/v⊥, which is always longer than or at minimum
the same length as 2tπ .

IV. EFFECTS OF DECOHERENCE

Up to now we considered the ideal case of purely unitary
evolution governed by the Hamiltonian Eq. (1). In a real-world
scenario, however, the time evolution will be affected not only
by the coupling of the two systems to each other, but also by
their inevitable coupling to their respective environments. To
show the workings of the T1-echo sequence, we therefore have
to take into account the effects of decoherence on the time
evolution. As stated initially, the sequence has the properties
that it might serve to protect the qubit state against relaxation
in the specific case where the additional coupled system is
a memory, i.e., its coherence properties are better than those
of the qubit. We will therefore focus on this situation in all
our following illustrations although our theoretical treatment
is valid in the general case.

To obtain the time evolution including decoherence, we
solve a Bloch-Redfield master equation [16,17] in secular
approximation [10] for the density matrix ρ(t) of the cou-
pled system of qubit and memory. We introduce individual
relaxation rates for the qubit and memory as γ1,q/m. Similarly
we write the pure dephasing rates as γϕ,q/m with the total
dephasing rate given by γ2 = 1/2γ1 + γϕ .

For the straightforward case where the pulses Û⊥ and ÛR

are applied as simple unitary gates with no time cost, we are
able to give simple and intuitive analytical results as well as an
analytical solution of full process tomography, demonstrating
the high degree of protection the T1-echo sequence offers
against energy relaxation. For the more realistic case where the
pulses are effected employing purely Hamiltonian evolution,
as illustrated in Fig. 4, we will present numerical results
and show that also in this case an effective protection from
decoherence can be achieved.

For clarity we will first focus on the case of only energy
relaxation acting on the qubit and neglect pure dephasing.
Then, if the pulses are infinitely strong, i.e., it does not take
any time to apply them, we arrive at a simple solution for the
density matrix ρ(t) of the coupled system. For a starting state of
|1q,0m〉 we calculate the population of the qubit’s excited state
P1,q = 1

2 [tr{ρ(T )σz} + 1] as a function of the free-evolution
time T and get

P1,q(T ) = e−γ+T , (7)

where γ+ = 1
2 (γ1,q + γ1,m) is the mean of the individual

relaxation rates of qubit and memory. Notably, this result is
independent of the detuning δω between qubit and memory.

Figure 5 shows the time evolution of the qubit’s excited-
state population as a function of free-evolution time T

from analytical calculations when considering only relaxation
acting on both subsystems. The blue dashed lines show free
evolution without the application of any pulses. The red
solid lines give the results after one subjects the system to
the T1-echo pulses. With the sequence, independent of δω,
a simple exponential decay is seen, following Eq. (7). As
a comparison, the green dotted lines shows the exponential
decay proportional to e−γ1,q t of the qubit itself, without any
coupling to another quantum system. For zero detuning (top
panel), the free evolution without any pulses shows strong
coherent oscillations of the excitation between qubit and
memory. After application of a T1-echo pulse, the resulting
decay is given by the envelope of the coherent decay curve
(cf. Ref. [10]). For nonzero detuning (the lower two panels),
the amplitude of the oscillations decreases and its frequency
ω0 increases. The effective decay changes from decay of the
mixed systems for small detuning to more qubitlike behavior
for stronger detuning. In contrast, the decay of the qubit state
after application of the T1-echo sequence stays the same and
is given always by Eq. (7).

The whole sequence including decoherence can be thought
of as a quantum dynamical map ε(ρq) acting on the density
matrix ρq of the qubit. We can write this map in terms of a
basis set {En} of all operators acting on the Hilbert space of
the qubit as

ε(ρq) =
∑
mn

χmnEmρqE
†
n (8)

with the coefficient matrix χ . Choosing as basis set {En} =
{1,σx,σy,σz} we get for the matrix χ

χ = 1

4

⎛
⎜⎝

1 + e−γ+t − 2e−(1/2)γ+t cos εt 0 0 1 − e−γ+t − 2ie−(1/2)γ+t sin εt

0 1 − e−γ+t −i(1 − e−γ+t ) 0
0 i(1 − e−γ+t ) 1 − e−γ+t 0

1 − e−γ+t + 2ie−(1/2)γ+t sin εt 0 0 1 + e−γ+t + 2e−(1/2)γ+t cos εt

⎞
⎟⎠ , (9)

where the oscillation frequency is ε ≈ εq ≈ εm and the sole
decay rate appearing is γ+. Again, this result is valid for only
relaxation acting on both subsystems. In this case the only

relevant decay rate in the time evolution is the mean of the
individual decay rates of the two subsystems, as can also be
seen in Fig. 5.
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The results presented up to now are for the ideal case
when perfect pulses are available and no pure dephasing acts
on either one of the subsystems. Above we have given the
possibility of generating the T1-echo sequence using only
detuned free evolution without the need for high-frequency
controls. In this proposal, however, the pulses will take a
finite amount of time tπ during which decoherence will act
on both systems and therefore the results will be worse than
for the case of infinitely short pulses. Additionally, the above

FIG. 6. (Color online) Time evolution of the qubit’s excited-state
population P1q

as a function of time with (solid red) and without
(dashed blue) application of the T1-echo sequence and for three
different detunings between qubit and memory. The pulses are
realized in this case using a detuned Hamiltonian evolution; see the
text. The green dotted line shows again simple exponential decay
with the rate γ1,q . The red line does not start at the origin due to
the finite pulse time 2tπ needed for application of the sequence.
Parameters are (in units of γ1,q ) γϕ,q = 0.5, γ1,m = γϕ,m = 0, v⊥ = 5,
δω = 0 (top), 1 (middle), 2 (bottom).

calculations did not include pure dephasing as a source of
decoherence.

Figure 6 shows the time evolution of the qubit’s excited-
state population P1,q as a function of total time t and for
different detunings when the sequence pulses are realized
by a detuned Hamiltonian evolution. These results are from
numerical calculations solving a Lindblad master equation
for the time evolution of the system’s density matrix. Both
relaxation rates γ1 as well as pure dephasing rates γϕ have
been included in the calculations. The red solid line again
shows the time evolution of the qubit’s excited-state population
P1,q after application of the T1-echo sequence, while the
dashed blue line shows the free evolution without any pulses.
The green dotted line is again for comparison with simple
qubit decay proportional to e−γ1,q t . In this situation the qubit
state population after applying the pulses still shows some
residual oscillations, due to the mixing of qubit and memory
states during the pulses. The overall decay is somewhat faster
than predicted by Eq. (7), mainly due to the additional pure
dephasing acting on the system. With the exception of an initial
residual oscillation, which is suppressed on a time scale given
by the dephasing rates γ2, the probability of finding the qubit in
its excited state P1,q is a smooth function of time, highlighting
the performance of the T1-echo sequence. Additionally, in the
illustrated case of interaction with a memory element, the
lifetime of the qubit state is enhanced as compared to the free
case.

To quantify the loss of qubit coherence during the appli-
cation of the echo pulses, Fig. 7 shows a plot of the initial
probability of finding the qubit in the excited state, P1,q(0),

FIG. 7. (Color online) Initial decay of the qubit state vector due
to the finite pulse length tπ obtained from numerical calculations.
The red solid curve shows the probability of finding the qubit in its
excited state as a function of detuning δω, after only the pulses have
been applied to the system via the detuned Hamiltonian evolution.
The total time that has passed is thus 2tπ , while no free evolution
has taken place, so the free-evolution time T is zero. The green
dotted curve for comparison shows the value of e−γ1,q 2tπ , meaning the
value of qubit excitation probability after application of the pulses
without any influence of the TLS. The blue dashed line finally shows
decay with the composite rate γ+. One can see that for small initial
detuning, the pulses lead to decay dominated by the qubit rate, while
for stronger initial detuning it crosses over to decay of the coupled
systems. Parameter values are (in units of γ1,q ) γϕ,q = 0.5, γ1,m =
γϕ,m = 0, v⊥ = 5.
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when no free-evolution time T has passed, i.e., only the pulses
have been applied via detuned evolution. The solid red line
shows P1,q (0) as a function of initial detuning δω including
both relaxation and dephasing on the qubit. For comparison,
the dotted green line gives the excitation probability of the
uncoupled qubit after the time 2tπ it takes to perform the
gates. Finally, the dashed blue line gives the value of e−γ+2tπ ,
i.e., the effective decay of the resonantly coupled system. As
one can see, close to resonance, where for zero time T the
excitation resides mostly in the qubit during the pulses, the
decay during detuned evolution is qubitlike, i.e., proportional
to e−γ1,q 2tπ . For stronger initial detuning, however, the detuning
during application of the gates, δω1, is close to resonant
and therefore the effective decay becomes similar to the
decay of the resonantly coupled systems when dephasing is
included [10].

V. DISCUSSION

It is instructive to consider the limits of the proposed pulses.
In one limit, when qubit and memory are initially in resonance,
δω = 0, the pulses correspond to a very strong detuning for an
equally short time. This effectively leads to a phase gate acting
on the system, which in the effective-Bloch-sphere picture
transfers the state from one hemisphere to the opposite one (cf.
Fig. 2). In the other limit, strong initial detuning, δω � v⊥,
we find δω1 = 0. In this case the pulses U⊥ and UR both
correspond to a full transfer of quantum information between
the qubit and the memory, and thus to a full SWAP sequence
between qubit and memory. This situation provides an intuitive
explanation for the resulting effective relaxation rate γ+ in
Eq. (7): the excitation first rests in the qubit for a time T/2
before being transferred into the memory and resting there
for another time span T/2. The effective decay is therefore
governed by the average of the two individual rates. In the
case of strong detuning, therefore, use of a traditional SWAP

sequence, where the information resides for the full time T

in the memory, is more advantageous. In the opposite case,
however, the T1-echo sequence not only negates the effects
of coherent coupling but also provides a very fast way of
refocusing the qubit state and offering additional protection
from relaxation.

The treatment of dephasing above was done by introducing
an additional pure dephasing rates γϕ into the Redfield tensor.
A more realistic treatment has to take into account the origin
of pure dephasing, that is, slow fluctuations in the level energy
of qubit and memory. The effect of these fluctuations on the
evolution is a change of the detuning δω and thus of the angle

ξ0 as well as the oscillation frequency ω0. As long as the
evolution time T is shorter than the inverse frequency of the
fluctuation, the T1-echo sequence will refocus the state of
the qubit also in this case, in exact analogy to the Hahn
echo. For the special case of zero detuning between qubit
and memory, δω = 0, this has already been experimentally
demonstrated in Ref. [18]. In that work it was shown that
additional echo pulses Û⊥ at equally spaced time intervals
can provide additional protection from dephasing [19]. This
conclusion, however, is true only for the slow-noise spectrum
leading to pure dephasing. Concatenation of pulses will then
lead to a further decreased sensitivity of the system to the low-
frequency parts of the spectrum. Considering energy relaxation
into a Markovian environment, on the other hand, Eq. (7)
describes the maximal achievable protection with our scheme.

The realization of the T1-echo sequence on which we
have focused our analysis here, using detuned Hamiltonian
evolution, is only one of many possibilities. In concrete
schemes more specific sequences might be more practical.
Depending on the implementation of qubit and memory,
two qubit gates might be readily available, and depending
on specific gate times might outperform the implementation
without high-frequency controls we showed here.

VI. CONCLUSIONS

We presented the T1-echo sequence as a method to
dynamically protect the state of a qubit from the effects of
interaction with another coherent quantum system. In the case
where the additional system shows better coherence properties
than the qubit itself, it additionally serves to improve the qubit
relaxation time. The sequence is formally similar to the well-
known spin-echo sequence and can be experimentally realized
without the need for high-frequency controls. Implementations
in different systems are possible; the only prerequisite for the
proposed implementation is the tunability of the qubit tran-
sition frequency. Possible realizations are in superconducting
qubit systems, where either intrinsic two-level defects [7] or
superconducting resonators [12] would play the role of the
additional elements, and implementation is straightforward.
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